############################################################## # S-puls program (R program) for computing the confidence # # coefficient of the 95% Wilson interval. # n is the sample size. ############################################################## n <- 5 k <- 1.96 n1 <- n+k^2 x <- seq(0,n,by=1) x1 <- x+k^2/2 p <- x/n q <- 1-p p1 <- x1/n1 ci <- cbind(p1-(k*sqrt(n)/(n+k^2))*sqrt(p*q+k^2/(4*n)), p1+(k*sqrt(n)/(n+k^2))*sqrt(p*q+k^2/(4*n))) aa <- matrix(sort(ci)) bb <- matrix(aa[aa>0]) cp <- matrix(bb[bb<1]) datalist <- array(0,c(nrow(ci),ncol(ci),nrow(cp))) for(k in 1:nrow(cp)) { datalist[ , ,k] <- cbind(cp[k,1]-ci[ ,1],ci[ ,2]-cp[k,1]) } index <- matrix(0,nrow(ci),nrow(cp)) prob <- matrix(0,nrow(ci),nrow(cp)) for(k in 1:nrow(cp)) { for(i in 1:nrow(ci)) { for(j in 1:ncol(ci)) { if(datalist[i,1,k]>0 && datalist[i,2,k]>0) { index[i,k] <- 1 prob[i,k] <- dbinom(i-1,n,cp[k,1]) } } } } icr <- index*prob cr <- cbind(cp,apply(icr,2,sum)) scr <- cr[sort.list(cr[,2]), ] mincr <- scr[1,2] parameter <- c(scr[1,1],scr[2,1]) print(list("confidence coefficient for Wilson interval"=mincr, "corresponding p"=parameter))